Molecular Pathways Stem Cell Quiescence

نویسندگان

  • Ling Li
  • Ravi Bhatia
چکیده

Adult stem cells are maintained in a quiescent state but are able to exit quiescence and rapidly expand and differentiate in response to stress. The quiescent state appears to be necessary for preserving the selfrenewal of stem cells and is a critical factor in the resistance of cancer stem cells (CSCs) to chemotherapy and targeted therapies. Limited knowledge about quiescence mechanisms has prevented significant advances in targeting of drug-resistant quiescent CSCs populations in the clinic. Thus, an improved understanding of the molecular mechanisms of quiescence in adult stem cells is critical for the development of molecularly targeted therapies against quiescent CSCs in different cancers. Recent studies have provided a better understanding of the intrinsic and extrinsic regulatory mechanisms that control stem cell quiescence. It is now appreciated that the p53 gene plays a critical role in regulating stem cell quiescence. Other intrinsic regulatory mechanisms include the FoxO, HIF-1a, and NFATc1 transcription factors and signaling through ATM and mTOR. Extrinsic microenvironmental regulatory mechanisms include angiopoietin-1, TGF-b, bone morphogenic protein, thrombopoietin, N-cadherin, and integrin adhesion receptors;Wnt/b-catenin signaling; and osteopontin. In this article, we review current advances in understanding normal stem cell quiescence, their significance for CSC quiescence and drug resistance, and the potential clinical applications of these findings. Clin Cancer Res; 17(15); 4936–41. 2011 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced Quiescence of Lgr5+ Stem Cells in Intestinal Organoids Enables Differentiation of Hormone-Producing Enteroendocrine Cells.

Lgr5+ adult intestinal stem cells are highly proliferative throughout life. Single Lgr5+ stem cells can be cultured into three-dimensional organoids containing all intestinal epithelial cell types at near-normal ratios. Conditions to generate the main cell types (enterocyte, goblet cells, Paneth cells, and M cells) are well established, but signals to induce the spectrum of hormone-producing en...

متن کامل

Signaling pathways involved in chronic myeloid leukemia pathogenesis: the importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells

Objective(s): Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential ...

متن کامل

Investigation of Stem Cell Aging Throughout the Lifetime and Therapeutic Opportunities

Introduction: Aging is a natural phenomenon that is caused by changes in the cells of the body. Theoretically, aging starts from birth and lasts throughout life. These changes affect the function of the cells. Also, in old tissues, the capacity for homeostasis and tissue repair is decline due to destructive changes in specific tissue stem cells, niche of stem cells and systemic factors that reg...

متن کامل

Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch

Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food...

متن کامل

Using Drosophila to study regulation of neural stem cell quiescence by nucleocytoplasmic transport

Cellular quiescence is a reversible non-dividing state. Subsets of adult mammalian stem cells, namely neural stem cells, spend the majority of their time in quiescence. The ability of stem cells to adopt the quiescent state appears to be crucial for long-term maintenance of the stem cell compartment. Tumour cells can also become quiescent and this renders them resistance to most chemotherapeuti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011